If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2-25=256
We move all terms to the left:
s^2-25-(256)=0
We add all the numbers together, and all the variables
s^2-281=0
a = 1; b = 0; c = -281;
Δ = b2-4ac
Δ = 02-4·1·(-281)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{281}}{2*1}=\frac{0-2\sqrt{281}}{2} =-\frac{2\sqrt{281}}{2} =-\sqrt{281} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{281}}{2*1}=\frac{0+2\sqrt{281}}{2} =\frac{2\sqrt{281}}{2} =\sqrt{281} $
| 6x9=39 | | 48x-18=174 | | 3z^2+33=0 | | 5x+5=15x-12-10 | | 2n-(-5)=11 | | 4=3x+2/x+7 | | 3x-2+6=16 | | 44=7n−12 | | -4(-4-x)=x-11 | | -91-72f=78-59f | | 3z^2=33 | | 11,400-9x=23 | | 6y=5;y= | | 15=2h+3 | | 3(-6x+4)=84 | | 11,400+9x=23 | | s^2+25=256 | | -s+(-6)=(-1) | | 5(4x+1)-5=120 | | -11x+2=+5 | | -4+(n+4)/5=-6 | | s+5=256 | | 2x+3+8x-15=180 | | 19x-(6x-8)=73 | | 18=12-1.5p/0.5 | | -6(x-1)-5x=61 | | n/2+7=5 | | (s-5)^2=256 | | 12/9/5+12x5= | | 5x-49=-34 | | 5x-45=-3/2x+7 | | 16=(n+6)/2+5 |